
Sequential User-based Recurrent Neural Network
Recommendations

Tim Donkers
University of Duisburg-Essen

Duisburg, Germany
tim.donkers@uni-due.de

Benedikt Loepp
University of Duisburg-Essen

Duisburg, Germany
benedikt.loepp@uni-due.de

Jürgen Ziegler
University of Duisburg-Essen

Duisburg, Germany
juergen.ziegler@uni-due.de

ABSTRACT
Recurrent Neural Networks are powerful tools for modeling
sequences. They are flexibly extensible and can incorporate
various kinds of information including temporal order. These
properties make them well suited for generating sequential
recommendations. In this paper, we extend Recurrent Neu-
ral Networks by considering unique characteristics of the
Recommender Systems domain. One of these characteris-
tics is the explicit notion of the user recommendations are
specifically generated for. We show how individual users
can be represented in addition to sequences of consumed
items in a new type of Gated Recurrent Unit to effectively
produce personalized next item recommendations. Offline
experiments on two real-world datasets indicate that our
extensions clearly improve objective performance when com-
pared to state-of-the-art recommender algorithms and to a
conventional Recurrent Neural Network.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Artificial intelligence;

KEYWORDS
Recommender Systems, Deep Learning, Neural Networks,
Recurrent Neural Networks, Sequential Recommendations

ACM Reference format:
Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. 2017. Sequential
User-based Recurrent Neural Network Recommendations. In Pro-
ceedings of RecSys ’17, Como, Italy, August 27-31, 2017, 9 pages.
https://doi.org/10.1145/3109859.3109877

1 INTRODUCTION
The majority of today’s Recommender Systems (RS) [41]
relies on algorithms that are designed under the assumption

RecSys ’17, August 27-31, 2017, Como, Italy
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of RecSys ’17, August 27-31, 2017 ,
https://doi.org/10.1145/3109859.3109877.

that user preferences are static patterns [29, 50]. Collabora-
tive Filtering (CF) [28] approaches, both neighborhood- and
model-based, have proved immensely useful without any con-
sideration of time. However, assuming consumption events
to be independent from each other precludes taking advan-
tage of the temporal dynamics that naturally exist in user
behavior [50]. Thus, despite the practical success of time-
agnostic models, it seems promising to investigate whether
the inclusion of temporal aspects can improve effectiveness.
For instance, many commercial goods are only bought dur-
ing a specific season. Music songs are played in succession
according to, among others, the user’s current mood or the
desire for diversity, and are often arranged in playlists. Fic-
tional series are typically consumed one episode after another,
before any other content is considered. In contrast to the
conception prevailing in many RS, individual data points
used in temporal or sequential recommendations thus can-
not be assumed independent and uniformly distributed, as
they typically form correlated sequences. Several ways exist
to approach this issue, e.g. by extending conventional time-
independent algorithms [e.g. 7, 27], integrating time as a
contextual factor [e.g. 22, 24], or by applying sequence-based
methods primarily used in other domains [e.g. 42]. Still, many
approaches ignore that generating recommendations is an
inherently time-dependent task and focus only on achieving
increasingly accurate predictions.

Compared to other areas, sequence modeling has overall
been less explored in RS research due to the long-lasting focus
on time-agnostic models. This gap may also be explained by
the unique nature of the recommendation problem. Although
heavily influenced by Machine Learning [41], many modern
techniques successfully applied in other domains cannot easily
be transfered to RS. This is particularly true for techniques
from a research field currently attracting much attention,
Deep Learning (DL). DL allows to solve problems of repre-
sentation learning, i.e. automatically discovering adequate
representations of data without manual feature engineering
[10]. These representations are expressed in terms of stacked,
hierarchically ordered simpler representations. While DL is
widely used with considerable success in areas such as Natural
Language Processing [6, 11, 12, 33, 36] or Image Processing
[16, 30, 47], it has only rarely been applied to the recommen-
dation problem. The few exceptions focus on purposes other
than sequential recommending, e.g. using DL as a prepro-
cessing step to conventional techniques [49, 52]. Even if they
consider consumption sequences [13, 18, 19, 48, 53, 54], they
often have other limitations.

https://doi.org/10.1145/3109859.3109877
https://doi.org/10.1145/3109859.3109877

Recurrent Neural Networks (RNN) represent a specific form
of DL models which possess several properties that make them
attractive for sequence modeling [10]. In particular, they are
capable of incorporating input from past consumption events,
allowing to derive a wide range of sequence-to-sequence map-
pings. In order to consider time as a first class factor for
modeling user preferences in RS, RNNs thus constitute a
promising family of techniques. One shortcoming of simple
variants, however, is the limited number of input variables
that can effectively be handled [2]. Gated architectures [6]
are designed to overcome this limitation by including gating
units trained to control information flow through the network,
thereby learning to keep information over a long period of
time. Both Long Short-Term Memory (LSTM) [9, 20] and
Gated Recurrent Unit (GRU) [5, 6] networks have shown
advantages in real-world applications. Gated RNNs, however,
have not been designed with the recommendation domain in
mind. In particular, they are not optimized for taking inter-
action between user and system into account. As mentioned
above, first attempts have been made to use DL for sequential
recommending [13, 18, 19, 48, 53, 54]. Yet, they tend to reuse
standard networks without modifications. As a result, the
models usually have no notion about the specification of a
target sequence, i.e. that respective RS have no mechanism
to consider the fact that a sequence of consumed items is
unique to an individual user. The networks treat every sin-
gle sequence equivalently, thus learning global consumption
behavior, but are unable to (deeply) integrate user-specific
information.

In this paper, we propose a novel DL approach to address
the sequential recommendation problem. First, relying on the
benefits of gated RNNs, we model the temporal dynamics
of consumption sequences. Second, through a novel gated
architecture with additional input layers, we explicitly repre-
sent the individual user in such a network. These user-based
GRUs are uniquely designed and optimized for the purpose
of generating personalized next item recommendations. We
theoretically and empirically show that not only out-of-the-
box RNNs, but especially our approach using a novel gated
architecture, may outperform state-of-the-art recommender
algorithms as well as their time-dependent counterparts with
respect to objective performance when predicting sequences.
Offline experiments conducted on two real-world datasets indi-
cate significant improvements when comparing our approach
to common baseline RS algorithms and to a conventional
RNN.

The remainder of this paper is organized as follows: First,
we discuss relevant work related to sequential recommending
and to applying DL in RS research. Second, we present our
approach of user-based RNNs for RS. Next, we describe how
we evaluated this approach in offline experiments. Finally,
we conclude the paper and discuss potential future work.

2 RELATED WORK
User representation in RS is often designed as a statistically
stationary process where every expressed preference is as-
sumed to be fixed over time [29, 50]. However, relational data
in real-world scenarios are often evolving and exhibit strong
temporal patterns [55]. Time may therefore be considered an
important contextual dimension also in RS [4]. Generating
recommendations in a time-independent manner may in con-
trast result in estimations of preferences based on user-item
relations that are no longer valid. This lack of adaptability
with respect to one of the most natural properties of user
behavior has motivated several approaches that integrate
temporal dynamics1. In the following, we discuss the most
important ones, and especially those most closely related to
ours that also exploit DL techniques as a means to generate
sequential recommendations.

2.1 Towards Sequential Recommendations
To adequately reflect user interests, functions that rank items
according to some notion of utility are today considered
most suitable for generating personalized recommendations
[14]. Advances in RS research suggest that implicit feedback
thereby often provides more comprehensive and extensive
insights into user behavior than explicit ratings [39]. Fitting
a static model to data naturally depending on dynamic pro-
cesses approximates an improper data-generating function
[42]. For this reason, several methods exist to incorporate
temporal information into RS at some stage, which can be
differentiated as follows [50]:
∙ Time-aware RS consider time as a contextual feature dur-

ing the training phase. Timestamps serve as an additional
source of information by which the model is enriched. The
rationale behind is that user behavior underlies certain
habits and regularities that repeat in regular time inter-
vals, consequently allowing a more accurate prediction of
similar patterns in the future.
∙ Time-dependent RS consider user preference data as

chronologically ordered sequences, assuming that the most
intrinsic property is that time establishes an order of the
events. Input is required in chronological form, while ex-
act time spans do not need to be taken into account. The
algorithms consequently do not aim at modeling time as
being cyclic, but rather at adapting to changes.

Existing time-aware methods include pre- and post-filtering
[1] as well as Tensor Factorization [24]. In general, statistical
models explicitly designed to predict sequences as used, for
example, in automated playlist generation [3], may also be ap-
plied. However, they typically do not aim at modeling higher-
order long-term dependencies. Eventually, time-dependent
RS are conceptually closest to the definition of time used
throughout this paper. Therefore, in the following, we focus
on attempts that utilize chronological input data. By incre-
mentally training models based on recency, the respective

1See one of the extensive surveys for an overview [e.g. 4, 50].

systems may capture, among others, continuous temporal dy-
namics such as concept drifts [26], changes in item popularity,
or virtually any effect observable in sequential data.

Many approaches extend conventional CF techniques, for
instance, by translating 𝑘-NN methods. In [18], it has been
parenthetically shown that an unpersonalized variant of item-
based 𝑘-NN achieves reasonably good results in sequence
prediction tasks. Under an assumption similar to the Markov
property, each prediction only depends on the item the user
has previously consumed. In [7], a fully personalized time-
discounted version has been proposed by extending 𝑘-NN
with an exponential decaying component that penalizes items
consumed a long time ago. Other approaches use time as a
means for determining similarities, e.g. when consumption
events are close together [17] or lie within a sliding window
employed over the most recent sessions [35].

Matrix Factorization (MF) [29] algorithms have also been
adapted. For example, baseline predictors can be added to
the original framework to account for temporal dynamics
[27]. Similar to their time-aware counterparts, sequential
MF models have been extended to Tensor Factorization [55].
The dimensions contain time intervals so that the tensor
can be seen as a periodic collection of ratings over time.
Others have turned the MF problem into a graph-based
model [38], integrated a Markov model for predicting the
next shopping basket [40], or generalized existing temporal
MF approaches to latent time series models [57]. Overall, the
variant proposed in [23] comes closest to the definition we
use: The authors model temporal order by means of a time
window that includes feature vectors of previously consumed
items. Thus, both collaborative interactions and time series
aspects of the collaborative data can be taken into account.

2.2 Deep Learning in RS Research
The approaches discussed before constitute extensions of es-
tablished time-agnostic recommendation methods. DL tech-
niques such as RNNs can also be considered useful for se-
quential recommending as they are specifically designed for
modeling temporal aspects. Despite the advantages of such
techniques, only few neural network approaches have yet
been generally proposed in RS research—most of them not
focused on sequential recommendations.

One of the first attempts that only uses a shallow network
structure is presented in [43]. Here, two-layered undirected
graphical models called Restricted Boltzmann Machines are
used to model user ratings for the prediction task. Deep
neural networks have in contrast primarily been applied in
preprocessing steps to conventional RS techniques. In [49], for
instance, features are extracted from unstructured content,
here raw music data. These features then serve as input to
conventional CF in order to improve its performance. In [52],
DL is performed on generic content-based information. The
resulting deep feature representation is used as an enhance-
ment to address the sparsity problem occurring in CF. More
specific data, e.g. tag-based user and item profiles, have been
embedded into a deep feature space in order to approach the

hardly controllable dynamics of underlying tag corpora [56].
For that, the authors model similarities between users and
potential target items by inferring a deep semantic model.
Finally, some approaches actually exploit user interaction
behavior. For example, for the purpose of generating adaptive
user interfaces, i.e. recommending next actions based on sim-
ilar interaction patterns found in the user base, GRUs have
been used to embed learned interaction patterns together
with users and interaction elements [46].

Only few works have yet used DL to explicitly generate
sequential recommendations in a self-contained manner. The
proposed approaches thereby often only focus on modeling
consumption sequences without explicitly representing indi-
vidual users [13, 18, 19, 48]. For instance, the applicability of
the approach presented in [18] is restricted to sessions only.
While user representation remains uncovered, the authors
introduce a variant of a GRU model that utilizes pair-wise
loss functions. In [48], this approach is extended by means of
a priori data augmentation in form of sequence preprocess-
ing. In addition, to reduce influence of outdated properties,
essentially two models are trained: The first one on the com-
plete dataset, which is then used to initialize the second
one subsequently trained only on a subset of newer samples.
Only recently, the RNN from [18] has been merged with
feature-rich content information [19]: Item one-hot vectors
and vectors of extracted features (e.g. corresponding to im-
ages of the respective items) are simultaneously treated as
input to a GRU layer.

Few exceptions also consider user-related aspects [53, 54],
but lack a deep integration of user vectors into the gating
process. In [53], the RNN framework is extended by solv-
ing two recommendation problems and then merging the
outputs: First, information is recurrently extracted from con-
sumed item sequences. Second, specific user concepts are
distinguished in a feed-forward manner. As a result, user
characteristics are only considered independently from se-
quence properties. In [54], the authors train individual RNNs
to model user and item evolution separately. The outputs
from both networks are subsequently coupled with further
auxiliary parameters capturing stationary concepts in order
to predict user ratings. This architecture requires learning
two RNNs such that user and item properties can yet again
only loosely be intertwined.

3 USER-BASED RECURRENT NEURAL
NETWORKS

Generating sequential recommendations relies on the assump-
tion that individual data points form correlated sequences.
Vectorized abstractions of user preferences or behavioral
patterns are valuable information sources that can help to
improve recommendation quality. In the previous section,
we have discussed several existing methods for formalizing
a sequential problem in the context of time-dependent rec-
ommendations. In the following, we elaborate on how we
consider temporal dynamics in RS using DL techniques, and
present a novel gated architecture for RNNs using specialized

GRUs that allows us to seamlessly integrate user-related
information into the model.

The explicit notion of user information distinguishes our
work from other DL approaches proposed for RS that usually
focus on consumption sessions without explicitly representing
the user. Compared to the few exceptions that already inte-
grate user-related information (see Section 2), our approach
is the first to deeply integrate user vectors into the gating
process.

3.1 Recurrent Neural Networks for RS
First, for generating sequential recommendations, we need to
concretize the generalized, domain-independent formulation
of RNNs and transfer it to RS. RNNs, especially when aug-
mented with gating layers, are powerful tools for modeling
sequences of any kind2. We rely on a variant of RNNs that
produces an output o𝑡∈R|𝐼| at each time step via an affine
transformation of the current hidden state h𝑡∈R𝑛:

o𝑡
= 𝑇𝑛,|𝐼|h

𝑡, (1)

where 𝑇𝑘,𝑙 : R𝑘 → R𝑙 is an affine transformation of the form
Wx+b. In conventional RNNs, the computation of a hidden
state is defined as a function of the previous hidden state and
an input vector. In the context of RNNs for RS, we define
this input vector i𝑡∈{0, 1}|𝐼| as a one-hot vector where the
only index different from zero corresponds to the index of a
particular item.

3.2 User-based Gated Recurrent Units
Now, in order to integrate user characteristics into the model,
we first define a one-hot user variable 𝜐𝑡 ∈{0, 1}|ϒ| with ϒ
being the set of users. We assume the data to be comprised
of user-item tuples such that 𝜐 can be interpreted as an
indicator of the user consuming item i at a certain time
step 𝑡 in the sequence. Based on this, we extend the original
definition (see [e.g. 6]) of the hidden state:

h𝑡
= 𝑓h𝑡−1, i𝑡, 𝜐𝑡; 𝜃 (2)

The network’s predictive power may benefit from explicitly
memorizing concepts about the user inside the recurrent
cells. In the following, we discuss several realizations of (2)
that architecturally modify the original recurrent unit3. By
incorporating a user variable 𝜐𝑡, we can thus deeply integrate
user-related information into the network.

3.2.1 Linear User Integration. Linear user integration is
comparable to strategies of considering context for gated
units. For instance, in [34], word-related topic vectors are
incorporated into a neural network language model to improve
performance. Similarly, 𝜐𝑡 can be viewed as an additional
input layer that is connected to the gated units. Thereby,
it can influence decisions about forgetting certain pieces of

2For a general introduction to RNNs, please refer to [e.g. 31].
3We use GRUs due to notational simplicity, although all principles
can easily be transferred to LSTM in analogous form.

information or updating hidden states:[︂
u
r

]︂
=

[︂
𝜎
𝜎

]︂
𝑇3𝑛,2𝑛

⎡⎣h𝑡−1

E𝑖i𝑡

E𝜐𝜐𝑡

⎤⎦ , (3)

where 𝜎 is the logistic sigmoid. E𝑖∈R|𝐼|×𝑛 and E𝜐∈R|ϒ|×𝑛

are embedding matrices that map one-hot vectors into a
densified information space. This kind of densification via
projection is widely applied in DL research (see [e.g. 32, 33]).

While the gating processes inside the hidden units deal with
temporal aspects of the data, non-temporal structures can be
exploited by including embedding. In the embedded space,
items that appear in similar contexts are also spatially close.
For notational simplicity, we assume that the embedding
dimension is equal to the hidden dimension 𝑛 although this
does not necessarily has to be the case.

Besides influencing update and reset gates, the user vector
can also be included in the calculation of hidden states. For
this, we first calculate a state update vector k∈R𝑛:

k = tanh 𝑇𝑛,𝑛 r⊙ h𝑡−1

+𝑇𝑛,𝑛E𝑖i𝑡

+𝑇𝑛,𝑛E𝜐𝜐𝑡 ,

(4)

where tanh is the hyperbolic tangent and⊙ represents element-
wise multiplication.

Subsequently, we can leakily integrate k into the hidden
state update mechanism subject to u:

h𝑡
= 1𝑛 − u⊙ h𝑡−1

+ u⊙ k, (5)

where 1𝑛 is a vector of ones.
While i𝑡 changes with every time step, consumption se-

quences are unique to only a single user, i.e. 𝜐𝑡 remains
constant. Generalized properties of each item in the sequence
relate to the consuming user by feeding back succeeding
losses to parameters conditioned by this particular 𝜐𝑡. As a
result, trained user-related parameters are representing su-
perordinate concepts. This means, parameters corresponding
to 𝜐𝑡 express the user’s general preference structure. Figure
1 depicts such a linear user GRU cell.

3.2.2 Rectified Linear User Integration. The linear integra-
tion of 𝜐𝑡 allows the recurrent cell to condition the activation
based on user characteristics. However, repeatedly applying
the same user vector increases redundancy that might lead
to undesired effects like higher sensitivity to underfitting
and non-zero predictions for all user-item pairs since the
particular network parameters are trained with respect to
unchanging input over a long series of steps.

Furthermore, user-related parameters might not be equally
important at every step in time. Some recommendations
might be sufficiently derived only based on item vectors
without considering a user component. For example, one can
assume that users will consume all parts of a movie trilogy
in a row. Thus, cells should learn to selectively set focus on
different parts of the user representation. We use a leaky

h(t)

i(t)

1	-

tanh

σ

⊙

+h(t-1) ⊙

⊙σ

u(t)
T

TT

r
u

k

Figure 1: Linear user-based GRU cell: In addition to the item
input vector i, the user representation 𝜐 is included.

integrator inspired by rectified linear units [15] to attach
weight to the transformed components of 𝜐𝑡:

E𝜐𝜐𝑡
𝑙 ←

⎧⎨⎩
0, if E𝜐𝜐𝑡

𝑙 < 𝜅1,𝑙
𝜔E𝜐𝜐𝑡

𝑙, if 𝜅1,𝑙 < E𝜐𝜐𝑡
𝑙 < 𝜅2,𝑙

E𝜐𝜐𝑡
𝑙, else

, (6)

where 𝑙 refers to a particular entry of vector E𝜐𝜐𝑡. 𝜅1∈R𝑛

and 𝜅2∈R𝑛 are threshold parameter vectors conditioned on
previous hidden state as well as item and user vector:[︂

𝜅1
𝜅2

]︂
= 𝑇3𝑛,2𝑛

⎡⎣h𝑡−1

E𝑖i𝑡

E𝜐𝜐𝑡

⎤⎦ (7)

The thresholds dynamically ensure that only relevant parts
of the user representation are exploited to produce network
output. User-specific concepts can thus be shut off if there
is reason to assume that the current input should be han-
dled independently. Note that very important concepts, i.e.
high values in E𝜐𝜐𝑡, are only discarded if there is a strong
indication of orthogonality, i.e. high values for 𝜅1.

In cases where a component is only important to a certain
degree, i.e. 𝜅1,𝑙 < E𝜐𝜐𝑡

𝑙 < 𝜅2,𝑙, it might be advantageous not
to turn it off completely, but only to limit its throughput. For
this purpose, we also integrate a leaky variant with 𝜔∈0, 1.
Update and reset cells are then calculated according to (3)
with the filtered user component. The leaky integrator is
included in the cell shown in Figure 2.

3.2.3 Attentional User Integration. As already derived in
Section 3.2.1, the user component represents stable concepts
as opposed to the current input vector i𝑡 that rather expresses
short-term aspects. The rectified linear user integration is
only designed to impede the user component when necessary.
As an alternative, the network could adaptively shift focus
between user and item aspects. For instance, the user compo-
nent’s influence should be low at 𝑡=0 when no information

h(t+1)ω

i(t)

>

>
⊙

i(t) u(t)

h(t-1)

κ1

κ2

T

Figure 2: The rectified linear gating process detached from the
complete cell: Item and user vectors as well as previous hidden
state are concatenated and mapped linearly twice in order to
calculate 𝜅1 and 𝜅2. Components of the user vector that are
element-wise smaller than the corresponding values in 𝜅1 are
discarded. Components smaller than 𝜅2 are diminished by
element-wise multiplication with 𝜔.

about the user is present, and progressively increase after-
wards as the sequence is further propagated. Moreover, at
times, a consumed item might be out of the ordinary and
would decrease succeeding estimation quality. In such cases,
resorting to a stable user representation and excluding the
outlier could attenuate or even annul its impact.

We therefore propose an adaptive approach that includes
a new kind of gated cell that regulates the gating process.
Let 𝜉∈R𝑛 be the attentional regulation gate:

𝜉 = 𝜎𝑇𝑛,𝑛h𝑡−1
+ 𝑇𝑛,𝑛E𝑖i𝑡 + 𝑇𝑛,𝑛E𝜐𝜐𝑡 (8)

We use logistic sigmoid as a squashing function to leakily
regulate the proportion of item and user focus. In contrast
to a linear user-based GRU cell, item and user vectors are
now weighted by 𝜉:[︂

u
r

]︂
=

[︂
𝜎
𝜎

]︂
𝑇3𝑛,2𝑛

⎡⎣ h𝑡−1

1𝑛 − 𝜉 ⊙E𝑖i𝑡

𝜉 ⊙E𝜐𝜐𝑡

⎤⎦ (9)

Furthermore, the hidden state’s update mechanism is not
only dependent on i𝑡 and 𝜐𝑡, but also on 𝜉:

k = tanh 𝑇𝑛,𝑛 r⊙ h𝑡−1

+𝑇𝑛,𝑛 1𝑛 − 𝜉 ⊙E𝑖i𝑡

+𝑇𝑛,𝑛 𝜉 ⊙E𝜐𝜐𝑡

(10)

The state update vector k is then integrated analogously
to (5). In contrast to (4), the attentional gate 𝜉 now acts as a
leaky integrator that can choose to completely ignore the user
aspect (extremely low sigmoids) or simply copy it (extremely
high sigmoids), see Figure 3. Informally speaking, the gate
regulates the extent to which users are considered as opposed
to items. Note that parameters for the attention gate should
be initialized with values close to zero such that the network

behaves similar to a standard GRU at the beginning of the
training phase, and then may gradually shift focus. Thus,
the network will not explicitly focus on the user component
until it has learned to do so.

h(t+1)

⊙

⊙

i(t) u(t)

h(t-1) T

1	-
ξ

σ

Figure 3: The attentional layer 𝜉 detached from the complete
cell: Item and user vectors as well as previous hidden state
are concatenated and mapped with sigmoid squashing to form
a gate that controls information flow between item and user
component. Low sigmoids increase the throughput of item-
related components, high sigmoids support the user side.

4 EVALUATION
To objectively justify our theoretical models derived in the
previous section, we conducted several offline experiments.
In particular, we aimed at answering the question how our
novel user-based RNN approach with its different variants to
deeply integrate user information performs on the sequential
recommendation task when compared to a conventional RNN
as well as state-of-the-art recommendation techniques.

Hence, we compared our three user-based networks (i.e.
using linear, rectified linear, and attentional user integration)
with a standard GRU network without any of our proposed
extensions4. We also considered the following baselines: We
trained time-independent item-based 𝑘-NN as well as its time-
dependent exponentially decaying counterpart [7]. Moreover,
using the BPR learning criterion [39], we trained a standard
MF [29] as well as a sequential MF [23] variant.

4.1 Methodology
In the following, we describe the evaluation metrics and
datasets we used, as well as the algorithmic setup.

4We implemented the different variants using TensorFlow (https:
//www.tensorflow.org/), an open source software framework especially
designed for building deep neural networks as data flow graphs. For
all experiments, we used ECP P2 instances provided by Amazon
Web Services (https://aws.amazon.com/), which are powerful scalable
instances designed for GPU-based operations using CUDA.

4.1.1 Metrics. Based on temporally ordered lists of con-
sumed items, our objective is to correctly predict the next
item a target user will likely consume. The ground truth at
a particular time step is therefore represented by a single
user-item tuple. To present the user with adequate recom-
mendations, the target item should be among the first few
recommended items. In accordance with recent RS research,
we thus use the following evaluation metrics:
∙ MRR@𝑘 (Mean Reciprocal Rank) is defined as the

average of the reciprocal ranks of the desired items [51].
The rank is set to zero if it is above 𝑘.
∙ Recall@𝑘 is defined as the fraction of cases where the

item actually consumed in the next event is among the
top 𝑘 items recommended [37].

We set 𝑘 = 20, as it appears desirable from a user’s per-
spective to expect the target among the first 20 items [18].

4.1.2 Datasets. We ran our approach as well as all the
baselines on the following two real-world datasets:
∙ MovieLens 10M: The MovieLens 10M dataset5 consists

of 10 000 054 ratings assigned to 10 681 movies by 71 567
users. In order to mimic implicit data, we binarized all
ratings independent of their value, considering them as
positive feedback as it has been done in [e.g. 39]. Using
the timestamps provided, we thus got an ordered sequence
of consumption events for each user. The dataset contains
only sequences with a minimum length of 20, making
further preprocessing of the training set unnecessary. The
average sequence length is 115. We aimed at predicting
the next movie to watch.
∙ LastFM 1K Users: The LastFM 1K Users dataset6 con-

tains user-timestamp-artist-song tuples collected via the
LastFM API. The dataset has a total of 19 150 868 data
points for 992 users. Due to computational reasons we
performed our evaluation on a 10 % subsample. The re-
sulting average sequence length is 1 738. We aimed at
predicting the next song title.

We split each dataset into three parts: First, the major
fraction of every sequence serves as training data. Second, we
use a validation set during training to measure performance
on unseen data. These validation results determine, for in-
stance, early stopping used in the learning phase to avoid
overfitting [21]. Third, we use a distinct test set to measure
actual performance after learning is completed. The training
set consists of the first 90 % of every user consumption se-
quence. The remaining 10 % of each sequence are split evenly
into validation and test set while maintaining the order. As
it is common practice in RS research, items not seen during
training are filtered out from validation and test set.

4.1.3 Hyperparameter and Network Setup. Table 1 shows
all hyperparameters we set for our experiments based on
extensive pretesting with grid search.

For the RNN variants, we propagate mini-batch based
learning with batch size of 1000. We use shallow networks
5https://grouplens.org/datasets/movielens/
6http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

https://www.tensorflow.org/
https://www.tensorflow.org/
https://aws.amazon.com/
https://grouplens.org/datasets/movielens/
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

Table 1: Hyperparameter values for all algorithms used in our
experiments on the two datasets.

Parameter Value

Item-based 𝑘-NN
Nearest Neighbors 100

Exp. Dec. Item-based 𝑘-NN
Decaying Constant 1

Matrix Factorization
Latent Factors 20
Iterations 30
Learning Rate 0.01

Seq. Matrix Factorization
Window Size 2

Parameter Value

General GRU
Batch size 1000
Layers 1
Hidden Units 1000
Unfold Dimension 20
Dropout 0.8
Gradient Cap 5.0
Iterations 10
Learning Rate 0.001

User-based GRU
User Dropout 0.5

of depth 1 with hidden dimensionality 1000 that is unfolded
for 20 time steps. Stacking multiple hidden recurrent lay-
ers on top of each other to create depth [8, 12, 44] did not
improve overall performance in our pretests. According to
[36], depth in RNNs introduces capabilities to represent dif-
ferent timescales. When trained on the datasets we used, the
networks however did not seem to benefit from this property.

For regularization, we apply Dropout [58] with a keep
probability of 0.8 for item and 0.5 for user vectors. We use a
gradient cap of 5.0 to clip large gradients that might otherwise
lead to skip over minima. Furthermore, we introduce a 𝐿2

parameter norm penalty on user side in order to control for
redundancy. Its contribution weight is set to 0.01. Regarding
the matrices embedding the one-hot encoded input vectors,
we set the dimension equal to the hidden dimension. Weight
matrices and biases are initialized randomly with values
drawn from −0.1, 0.1. We run training for 10 iterations.

Linear and attentional user integration do not require
setting any further parameters. In case of rectified linear
user integration, grid search indicated to set 𝜔 = 0.2, i.e.
diminished user-related concepts are only considered by 20 %
of their original magnitude.

Pretests also indicated that the RNNs are trained best with
Adam optimizer [25] using a learning rate of 0.001 against
Cross Entropy loss. For this, we normalize output vectors o𝑡

via softmax function in order to produce a valid probability
distribution.

4.2 Results
Table 2 shows the results received after training the baselines
as well as our DL models on both datasets.

The RNNs yield results superior to the baselines in terms
of both metrics. On the MovieLens dataset, there is a sub-
stantial gain in objective performance compared to the next
best baseline. Namely, there is an improvement of 12 % in
MRR@20 and 23 % in Recall@20, respectively, when compar-
ing exponentially decaying item-based 𝑘-NN to the standard
GRU. On the LastFM dataset, the differences in ranking qual-
ity become even more apparent (at least 157 % improvement
in terms of MRR@20, 21 % in Recall@20).

Integrating user information significantly improves statis-
tical power in GRU networks. All user-based RNN variants

Table 2: MRR@20 and Recall@20 for all baselines as well as
our proposed user-based RNN variants.

MovieLens LastFM

MRR@20 Recall@20 MRR@20 Recall@20

Baselines
Item-based 𝑘-NN 0.036 39 0.121 42 0.044 38 0.101 26
Exp. Dec. Item-based 𝑘-NN 0.042 31 0.128 53 0.055 94 0.167 24
Matrix Factorization 0.011 92 0.077 44 0.032 89 0.127 23
Seq. Matrix Factorization 0.015 50 0.107 30 0.027 69 0.112 24
Standard GRU 0.047 30 0.157 73 0.143 74 0.202 69

User-based RNN
Linear User-based GRU 0.052 51 0.160 28 0.182 52 0.249 20
Rectified Linear User-based GRU 0.059 01 0.186 97 0.191 54 0.254 09
Attentional User-based GRU 0.062 55 0.205 40 0.187 31 0.254 85

outperform the standard GRU network that does not con-
sider user information. In particular, the integration variant
that performs best in terms of MRR@20, i.e. attentional on
the MovieLens and rectified linear on the LastMF dataset,
leads to an improvement of 32 % or 33 %, respectively. For
Recall@20, there is similar gain with results 30 % better on
the MovieLens, and 28 % better on the LastFM dataset.

Taking a closer look at the results for the user-based RNNs,
attentional user integration achieves the overall best results.
Only on the LastFM dataset, MRR@20 is slightly lower
than for the rectified linear variant. In all other cases, the
attentional realization outperforms the others.

Finally, concerning the baselines, item-based 𝑘-NN is better
at modeling sequences than MF. Even sequential MF achieves
clearly inferior results than the original item-based 𝑘-NN
without any temporal extensions. As a side note, while the
temporal item-based 𝑘-NN generally outperforms its time-
independent counterpart, sequential MF seems not beneficial
compared to standard MF on the LastFM dataset.

4.3 Discussion
Overall, the results indicate that RNNs clearly outperform
other recommending approaches when it comes to generating
sequential recommendations. As earlier experiments by others
suggested [e.g. 18, 48], even out-of-the-box RNNs achieve
superior results with respect to widely used evaluation metrics
when compared to state-of-the-art item-based 𝑘-NN or MF
approaches. This is particularly true for their derivatives
specifically extended to consider temporal effects.

By deeply integrating user information, we were able to
personalize the sequence prediction task. The experiments
suggest that our networks are able to learn the implicit
relations between events more effectively when passing in
externally encoded information about users. Nonetheless, the
advantages of exploiting temporal dynamics in combination
with user information seem to depend on the background data.
For instance, the relative performance gain is much higher
on the LastFM than on the MovieLens dataset. Considering
the nature of the datasets, this is however not surprising:
During one session, users generally listen to more than one
song in a row, e.g. they consume playlists or whole albums at
once, and factors such as the user’s mood determine which

title is likely to be consumed next. Thus, similar to the un-
derlying grammar in Natural Language Processing, there
exist inherent dependencies between succeeding events that
can be exploited. Such relations are much less obvious when
recommending movies as people in this case generally do not
consume multiple items in immediate succession. Further-
more, sequences in the MovieLens dataset can be considered
more artificially, as they do not describe actual consumption
events at certain points in time, but reproduce the process
of actively providing feedback in form of ratings. Still, there
seem to be some implicit connections between the events that
can be captured by the networks: Even with such a dataset,
RNNs achieve superior results for predicting the next item
compared to baseline techniques.

Regarding the different variants of user integration, recti-
fied linear and attentional realization yield generally better
results than the linear one. This indicates that regulating
redundancy of user input in fact appears to be beneficial. The
mechanism seems to support cells in controlling information
flow more accurately. In both of the advanced variants, influ-
ence of the user variable can be diminished when necessary,
thus restricting its impact and preventing overgeneralization.
Thereby, it is important to note that integrating user informa-
tion does not come along with considerably higher runtime
requirements. In particular, the user-based RNNs can be
trained in almost same amount of time as a standard GRU
network. For instance, on the MovieLens dataset the number
of processed input tuples per second was on average 24 917 for
the Standard GRU, 22 887 for the Linear User-based GRU,
22 840 for the Rectified Linear User-based GRU, and 22 822
for the Attentional User-based GRU. In general, as earlier
work on RNNs in RS research has shown [e.g. 18], training
the models with sufficient computational power can be done
in reasonable time.

5 CONCLUSIONS AND OUTLOOK
With the rise of DL in the past decade, RNNs have become
practical and powerful tools for large-scale supervised learn-
ing of sequences. This progress has become most apparent
in Natural Language Processing where they have set sev-
eral new benchmarks outperforming techniques that have
been considered state-of-the-art for a long time. Similar to
other works, the promising results from our experiments show
that RNNs allow to take a novel perspective on applications
such as RS that were originally designed in a time-agnostic
manner. Our novel approach proposed in this paper allows
generating personalized suggestions while time is considered
as a first class factor, thereby significantly improving recom-
mendation quality. The way we formulate RNNs enables us
to model user behavior and to capture dependencies between
consumption events more adequately than with established
recommendation techniques that often fail at appropriately
representing temporal dynamics in user interests.

Gated recurrent networks have set records in accuracy
on many tasks in recent years. Noteworthy, these advances
result from novel or extended architectures rather than from

fundamentally novel algorithms [31, 45]. This also applies
to our user-based RNNs: We essentially adopted the orig-
inal architecture to take the unique characteristics of the
recommendation domain into account. Our specific exten-
sions have then shown to increase statistical expressiveness:
Deeply integrating a user representation leads to significant
improvements when predicting user behavior such as watch-
ing movies or listening to music. Including a user-specific
layer, the networks seem capable of learning concepts that
are unique to a certain user. Since changing inputs are related
to a user vector that remains constant over the course of a
particular sequence, the networks learn to represent global
user concepts explicitly, rather than implicitly as it would
be the case in conventional gated units. Hence, the networks
can distinguish between user preferences more accurately.

We have presented a DL-based framework that is par-
ticularly designed to generate personalized next item rec-
ommendations, thereby independent of techniques used in
contemporary RS research. In future work, we plan to addi-
tionally integrate state-of-the-art recommendation techniques
such as MF into the design space of RNNs, e.g. in form of
contextual variables. By this means, we would be able to
combine the best of both worlds while also extending the
scope of applicability. Also, this might be helpful for better
supporting situations where the user’s consumption sequence
is rather short, e.g. at cold-start. Moreover, we aim at tak-
ing varying time intervals into account. RNNs are designed
for modeling sequential data with no notion of time spans
between succeeding events. Especially for recommendation
tasks, however, time deltas can be extremely valuable infor-
mation. For instance, if two consumption events are distant
from each other, the first item might not be a good predictor
because user preference likely has changed over time. In this
context, a comparison with statistical models particularly
designed for predicting sequences would also be of interest.
Finally, as interactive approaches are more and more dis-
cussed in RS research, it seems promising to examine ways
of increasing control and transparency also in DL-based RS.

REFERENCES
[1] L. Baltrunas and X. Amatriain. 2009. Towards time-dependant

recommendation based on implicit feedback. In CARS ’09.
[2] Y. Bengio, P. Frasconi, and P. Simard. 1993. The problem of

learning long-term dependencies in recurrent networks. In ICNN
’93. IEEE, 1183–1188.

[3] G. Bonnin and D. Jannach. 2015. Automated generation of music
playlists: Survey and experiments. ACM Comput Surv 47, 2
(2015), 26:1–26:35.

[4] P. G. Campos, F. Díez, and I. Cantador. 2014. Time-aware
recommender systems: A comprehensive survey and analysis of
existing evaluation protocols. User Model User-Adap 24, 1-2
(2014), 67–119.

[5] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. 2014.
On the properties of neural machine translation: Encoder-decoder
approaches. In SSST ’14.

[6] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empir-
ical evaluation of gated recurrent neural networks on sequence
modeling. In Deep Learning Workshop at NIPS ’14.

[7] Y. Ding and X. Li. 2005. Time weight collaborative filtering. In
CIKM ’05. ACM, 485–492.

[8] S. El Hihi and Y. Bengio. 1995. Hierarchical recurrent neural
networks for long-term dependencies. In NIPS ’95. 493–499.

[9] F. Gers. 2001. Long short-term memory in recurrent neural
networks. Ph.D. Dissertation. University of Hannover.

[10] I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep learning.
MIT Press.

[11] A. Graves. 2013. Generating sequences with recurrent neural
networks. (2013).

[12] A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition
with deep recurrent neural networks. In ICASSP ’13. IEEE, 6645–
6649.

[13] A. Greenstein-Messica, L. Rokach, and M. Friedman. 2017.
Session-based recommendations using item embedding. In IUI

’17. ACM, 629–633.
[14] A. Gunawardana and G. Shani. 2009. A survey of accuracy

evaluation metrics of recommendation tasks. J Mach Learn Res
10 (2009), 2935–2962.

[15] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet clas-
sification. In ICCV ’15. 1026–1034.

[16] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning
for image recognition. In CVPR ’16. IEEE, 770–778.

[17] C. Hermann. 2010. Time-based recommendations for lecture
materials. In EdMedia ’10. 1028–1033.

[18] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. 2015.
Session-based recommendations with recurrent neural networks.
In ICLR ’16.

[19] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk. 2016.
Parallel recurrent neural network architectures for feature-rich
session-based recommendations. In RecSys ’16. ACM, 241–248.

[20] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory.
Neural Comput 9, 8 (1997), 1735–1780.

[21] T. Hofmann. 2001. Unsupervised learning by probabilistic latent
semantic analysis. Mach Learn 42, 1-2 (2001), 177–196.

[22] T. Hussein, T. Linder, W. Gaulke, and J. Ziegler. 2014. Hy-
breed: A software framework for developing context-aware hybrid
recommender systems. User Model User-Adap 24, 1-2 (2014),
121–174.

[23] A. Karatzoglou. 2011. Collaborative temporal order modeling. In
RecSys ’11. ACM, 313–316.

[24] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. 2010.
Multiverse recommendation: N-dimensional tensor factorization
for context-aware collaborative filtering. In RecSys ’10. ACM,
79–86.

[25] D. Kingma and J. Ba. 2015. Adam: A method for stochastic
optimization. In ICLR ’15.

[26] R. Klinkenberg and T. Joachims. 2000. Detecting concept drift
with support vector machines. In ICML ’00. Morgan Kaufmann,
487–494.

[27] Y. Koren. 2010. Collaborative filtering with temporal dynamics.
Commun ACM 53, 4 (2010), 89–97.

[28] Y. Koren and R. Bell. 2015. Recommender systems handbook.
Springer, Chapter Advances in collaborative filtering, 77–118.

[29] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix factorization
techniques for recommender systems. IEEE Computer 42, 8
(2009), 30–37.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS

’12. 1097–1105.
[31] Z. C. Lipton, J. Berkowitz, and C. Elkan. 2015. A critical review

of recurrent neural networks for sequence learning. (2015).
[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient

estimation of word representations in vector space. Workshop at
ICLR ’13 .

[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
2013. Distributed representations of words and phrases and their
compositionality. In NIPS ’13. 3111–3119.

[34] T. Mikolov and G. Zweig. 2012. Context dependent recurrent
neural network language model. In SLT ’12. 234–239.

[35] O. Nasraoui, J. Cerwinske, C. Rojas, and F. Gonzalez. 2007.
Performance of recommendation systems in dynamic streaming
environments. In SDM ’07. SIAM, 569–574.

[36] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. 2014. How to
construct deep recurrent neural networks. In ICLR ’14.

[37] D. M. Powers. 2011. Evaluation: From precision, recall and F-
measure to ROC, informedness, markedness and correlation. J
Mach Learn Tech 2, 1 (2011), 37–63.

[38] S. Rallapalli, L. Qiu, Y. Zhang, and Y.-C. Chen. 2010. Exploiting
temporal stability and low-rank structure for localization in mobile
networks. In MobiCom ’10. ACM, 161–172.

[39] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback.
In UAI ’09. AUAI Press, 452–461.

[40] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. 2010. Factor-
izing personalized Markov chains for next-basket recommendation.
In WWW ’10. ACM, 811–820.

[41] F. Ricci, L. Rokach, and B. Shapira. 2015. Recommender systems
handbook (2nd ed.). Springer.

[42] N. Sahoo, P. V. Singh, and T. Mukhopadhyay. 2012. A hidden
Markov model for collaborative filtering. MIS Quarterly 36, 4
(2012), 1329–1356.

[43] R. Salakhutdinov, A. Mnih, and G. E. Hinton. 2007. Restricted
Boltzmann machines for collaborative filtering. In ICML ’07.
ACM, 791–798.

[44] J. Schmidhuber. 1992. Learning complex, extended sequences
using the principle of history compression. Neural Comput 4, 2
(1992), 234–242.

[45] J. Schmidhuber. 2015. Deep learning in neural networks: An
overview. Neural Networks 61 (2015), 85–117.

[46] H. Soh, S. Sanner, M. White, and G. Jamieson. 2017. Deep se-
quential recommendation for personalized adaptive user interfaces.
In IUI ’17. ACM, 589–593.

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going deeper
with convolutions. In CVPR ’15. IEEE, 1–9.

[48] Y. K. Tan, X. Xu, and Y. Liu. 2016. Improved recurrent neural
networks for session-based recommendations. In DLRS ’16. ACM,
17–22.

[49] A. van den Oord, S. Dieleman, and B. Schrauwen. 2013. Deep
content-based music recommendation. In NIPS ’13. 2643–2651.

[50] J. Vinagre, A. M. Jorge, and J. Gama. 2015. An overview on the
exploitation of time in collaborative filtering. Data Min Knowl
Disc 5, 5 (2015), 195–215.

[51] E. M. Voorhees. 1999. The TREC-8 question answering track
report. In TREC ’99. 77–82.

[52] H. Wang, N. Wang, and D.-Y. Yeung. 2015. Collaborative deep
learning for recommender systems. In KDD ’15. ACM, 1235–1244.

[53] C. Wu, J. Wang, J. Liu, and W. Liu. 2016. Recurrent neural
network based recommendation for time heterogenous feedback.
Knowl-Based Syst 109 (2016), 90–103.

[54] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. 2017.
Recurrent recommender networks. In WSDM ’17. ACM, 495–503.

[55] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. Carbonell.
2010. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In SDM ’10. SIAM, 211–222.

[56] Z. Xu, C. Chen, T. Lukasiewicz, Y. Miao, and X. Meng. 2016.
Tag-aware personalized recommendation using a deep-semantic
similarity model with negative sampling. In CIKM ’16. ACM,
1921–1924.

[57] H.-F. Yu, N. Rao, and I. S. Dhillon. 2015. High-dimensional time
series prediction with missing values. (2015).

[58] W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Recurrent neural
network regularization. (2014).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Towards Sequential Recommendations
	2.2 Deep Learning in RS Research

	3 User-Based Recurrent Neural Networks
	3.1 Recurrent Neural Networks for RS
	3.2 User-based Gated Recurrent Units

	4 Evaluation
	4.1 Methodology
	4.2 Results
	4.3 Discussion

	5 Conclusions and Outlook
	References

